Development of Robust Varicella Zoster Virus Luciferase Reporter Viruses for In Vivo Monitoring of Virus Growth and Its Antiviral Inhibition in Culture, Skin, and Humanized Mice

Author:

Lloyd Megan G.,Yee Michael B.,Flot Joseph S.,Liu Dongmei,Geiler Brittany W.ORCID,Kinchington Paul R.ORCID,Moffat Jennifer F.ORCID

Abstract

There is a continued need to understand varicella-zoster virus (VZV) pathogenesis and to develop more effective antivirals, as it causes chickenpox and zoster. As a human-restricted alphaherpesvirus, the use of human skin in culture and mice is critical in order to reveal the important VZV genes that are required for pathogenesis but that are not necessarily observed in the cell culture. We previously used VZV-expressing firefly luciferase (fLuc), under the control of the constitutively active SV40 promoter (VZV-BAC-Luc), to measure the VZV spread in the same sample. However, the fLuc expression was independent of viral gene expression and viral DNA replication programs. Here, we developed robust reporter VZV viruses by using bacterial artificial chromosome (BAC) technology, expressing luciferase from VZV-specific promoters. We also identified two spurious mutations in VZV-BAC that were corrected for maximum pathogenesis. VZV with fLuc driven by ORF57 showed superior growth in cells, human skin explants, and skin xenografts in mice. The ORF57-driven luciferase activity had a short half-life in the presence of foscarnet. This background was then used to investigate the roles for ORF36 (thymidine kinase (TK)) and ORF13 (thymidylate synthase (TS)) in skin. The studies reveal that VZV-∆TS had increased sensitivity to brivudine and was highly impaired for skin replication. This is the first report of a phenotype that is associated with the loss of TS.

Funder

National Institute of Allergy and Infectious Diseases

National Institutes of Health

National Eye Institute

Research to Prevent Blindness

The Eye & Ear Foundation of Pittsburgh

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3