A Neurally Inspired Model of Figure Ground Organization with Local and Global Cues

Author:

Ramenahalli SudarshanORCID

Abstract

Figure Ground Organization (FGO)-inferring spatial depth ordering of objects in a visual scene-involves determining which side of an occlusion boundary is figure (closer to the observer) and which is ground (further away from the observer). A combination of global cues, like convexity, and local cues, like T-junctions are involved in this process. A biologically motivated, feed forward computational model of FGO incorporating convexity, surroundedness, parallelism as global cues and spectral anisotropy (SA), T-junctions as local cues is presented. While SA is computed in a biologically plausible manner, the inclusion of T-Junctions is biologically motivated. The model consists of three independent feature channels, Color, Intensity and Orientation, but SA and T-Junctions are introduced only in the Orientation channel as these properties are specific to that feature of objects. The effect of adding each local cue independently and both of them simultaneously to the model with no local cues is studied. Model performance is evaluated based on figure-ground classification accuracy (FGCA) at every border location using the BSDS 300 figure-ground dataset. Each local cue, when added alone, gives statistically significant improvement in the FGCA of the model suggesting its usefulness as an independent FGO cue. The model with both local cues achieves higher FGCA than the models with individual cues, indicating SA and T-Junctions are not mutually contradictory. Compared to the model with no local cues, the feed-forward model with both local cues achieves ≥8.78% improvement in terms of FGCA.

Publisher

MDPI AG

Reference86 articles.

1. A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure–ground organization.

2. A century of Gestalt psychology in visual perception: II. Conceptual and theoretical foundations.

3. Principles of Gestalt Psychology;Koffka,1935

4. Eine Untersuchung uber Symmetrie und Asymmetrie bei visuellen Wahrnehmungen;Bahnsen;Z. Fur Psychol.,1928

5. Vision Science-Photons to Phenomenology;Palmer,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3