Hybridization of CSP Plants: Characterization of a Molten Salt Heater for Binary and Ternary Nitrate Salt Mixtures Fueled with Gas/Biogas Heaters

Author:

Giaconia AlbertoORCID,Balog IrenaORCID,Caputo Giampaolo

Abstract

Hybridization of CSP plants with alternative energy sources (fuels) represents a means to improve flexibility of operation, power dispatchability and utilization factor of the plant. New generation CSP plants make use of molten salts as Heat Transfer Fluid (HTF) besides Thermal Energy Storage (TES) medium. Therefore, proper interfaces should be developed to effectively transfer the heat from the back-up source to the molten salt. This paper presents the results obtained in the experimental validation of an innovative gas-fueled Molten Salt Heater (MSH) prototype. The objective of this research is to validate the MSH design, where the specific properties of molten salts (compared to other HTFs, e.g., thermal oils) have to be taken into account. The developed reduced-scale MSH (90 kW thermal) consists of a heat exchanger with the molten salt flowing inside finned tubes cross-flowed with the hot flue gas generated in an upstream combustion chamber. LPG or a biogas-like mixture has been used as gas fuel. Experimental results have been obtained with two different molten salt mixtures: the “solar salt” binary mixture (NaNO3/KNO3, 60/40%w) typically used in CSP applications (up to 565 °C) and the ternary mixture known as Hitec XL® containing sodium/potassium/calcium nitrates (NaNO3/KNO3/Ca(NO3)2, 15/43/42%w) characterized by lower freezing temperatures. Experimental tests have been carried out changing some operative parameters like the flow rate of the molten salt (0.45–0.94 kg/s), the inlet temperatures of the molten salt (303–445 °C) and of the hot gas (596–632 °C). For both molten salt mixtures, it was demonstrated that heat transfer correlations based on the Dittus-Boelter equation allow to predict experimental results with <10% deviation between experimental and theoretical values of the heat transfer coefficient.

Funder

Italian Ministry of Ecological Transition

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference20 articles.

1. The Power to Change: Solar and Wind Cost Reduction Potential to 2025,2016

2. Renewable Power Generation Costs in 2017. Key Findings and Executive Summary,2018

3. Making the sun shine at night: comparing the cost of dispatchable concentrating solar power and photovoltaics with storage

4. Exploring the Potential Competitiveness of Utility-Scale Photovoltaics Plus Batteries with Concentrating Solar Power, 2015–2030;Feldman,2016

5. A model of integration between PV and thermal CSP technologies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3