Solar-Hybrid Cold Energy Storage System Coupled with Cooling Pads Backup: A Step towards Decentralized Storage of Perishables

Author:

Munir Anjum,Ashraf Tallha,Amjad WaseemORCID,Ghafoor Abdul,Rehman Sidrah,Malik Aman Ullah,Hensel Oliver,Sultan MuhammadORCID,Morosuk TatianaORCID

Abstract

Post-harvest loss is a serious issue to address challenge of food security. A solar-grid hybrid cold storage system was developed and designed for on-farm preservation of perishables. Computational Fluid Dynamic analysis was performed to assess airflow and temperature distribution inside the cold chamber. The system comprises a 21.84 m3 cubical cold storage unit with storage capacity of 2 tonnes. A hybrid solar system comprising 4.5 kWp PV system, 5 kW hybrid inverter, and 600 Ah battery bank was used to power the entire system. A vapor-compression refrigeration system (2 tonnes) was employed coupled with three cooling pads (filled with brine solution) as thermal backup to store cooling (−4 °C to 4 °C). Potatoes were stored at 8 °C for a period of three months (May 2019 to July 2019) and the system was tested on grid utility, solar, and hybrid modes. Solar irradiation was recorded in range of 5.0–6.0 kWh/(m2 × d) and average power peak was found to be 4.0 kW. Variable frequency drive was installed with compressor to eliminate the torque load and it resulted about 9.3 A AC current used by the system with 4.6 average Coefficient of Performance of refrigeration unit. The average energy consumed by system was found to be 15 kWh with a share of 4.3 kWh from grid and 10.5 kWh from solar, translating to 30% of power consumption from grid and 70% from solar PV modules. Overall, cold storage unit efficiently controlled total weight loss (7.64%) and preserved quality attributes (3.6 ⁰Brix Total soluble solids, 0.83% Titratable acidity, 6.32 PH) of the product during storage time.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference32 articles.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3