Novel Dual Walling Cob Building: Dynamic Thermal Performance

Author:

Zeghari Kaoutar,Gounni Ayoub,Louahlia HasnaORCID,Marion Michael,Boutouil Mohamed,Goodhew SteveORCID,Streif François

Abstract

This paper emphasizes the experimental and numerical study of new cob mixes used for insulation and load bearing wall elements. The experimental study provides complete datasets of thermal properties of the new walling materials, using cob with density ranging from 1107 kg/m3 to 1583 kg/m3 for structural walls and less than 700 kg m−3 for insulation walls. Various mixes of French soils and fibres (reed, wheat straw, hemp shiv, hemp straw, and flax straw) with different water contents are studied. The lowest average thermal conductivity is obtained for the structural cob mix prepared of 5% wheat straw and 31% of water content. The insulation mix, prepared with 25% reed and 31% water content, has the lowest thermal conductivity. Investigation of diffusivity, density, and heat capacity shows that, when thermal conductivity is lower than 0.4 W m−1 K−1, the decrease in cob density leads to better insulation values and higher heat capacity. Little variation is noticed regarding the density and heat capacity for cob mixes with thermal conductivity higher than 0.4 W m−1 K−1. Furthermore, the non-uniformity of local thermal conductivity and heat losses through the samples is due mainly to the non-uniform distribution of fibres inside the mixes inducing an increase in heat loss up to 50% for structural walls and 25% for insulation walls. Cob thermal properties are used in a comparative simulation case study of a typical house under French and UK climatic conditions. The energy performance of the conventional building is compared to a dual walled cob building, showing remarkable reduction in energy consumption as the cob walls, whilst maintaining comfortable indoor conditions without additional heating.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3