Abstract
Recent advances in power converter applications with highly demanding control goals require the efficient implementation of superior control strategies. However, the real-time application of such control strategies demands high computational power that necessitates efficient digital controllers like field programmable gate array (FPGA). The inherent parallelism offered by FPGAs minimizes the execution time and exhibits an excellent cost-performance trade-off. In addition, rapid advancements in FPGA technology with a broad portfolio of intellectual property (IP) cores, design tools, and robust embedded processors resulted in a design paradigm shift. This article proposes a low-cost solution for the resource-optimized implementation of dynamic, highly accurate, and computationally intensive finite state-predictive direct current control (FS-PDCC). The challenges for implementing complex control algorithms for power converters are discussed in detail, and the control is implemented in Intel’s low-cost non-volatile FPGA-MAX®10. An efficient design methodology using finite state machine (FSM) is adopted to achieve time/resource-efficient implementation. The parallel and pipelined architecture of FPGA provides better resource utilization with high execution speed. The experimental results prove the efficiency of FPGA-based cost-effective solutions that offer superior performance with better output quality.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献