Conceptual Design and Hydrodynamic Performance of a Modular Hybrid Floating Foundation

Author:

Qu XiaobinORCID,Yao YingxueORCID,Du Jianjun

Abstract

The comprehensive utilization of offshore renewable energies is an effective way to solve the intermittency and variability of power supply. This paper aims to present a hybrid floating system (HFS) based on a modular buoyancy-distributed floating foundation (BDFF) that can be equipped with a horizontal-axis wind turbine, solar panels, and wave energy converters (WEC). A simplified test model with a Froude scale ratio of 1/10 is employed to perform the experiments in a deep-water basin to validate the numerical results computed from the code program ANSYS AQWA based on the potential flow theory. The Response Amplitude Operators (RAOs) under regular waves are compared to evaluate the hydrodynamic performance. There is a good agreement in the surge, pitch, and heave RAOs for experiments and the numerical simulation, with a maximum of 6.45 degrees per meter for the pitch motion. Furthermore, the mooring tensions in the time domain are analyzed under different wave conditions.The tension RAOs from simulations are slightly higher than those from measurements with a maximum value at the period of 3.416 s. The mooring line on the windward side has a more considerable mooring tension that is far less than the allowable tensile strength, especially under the wave height of 2 m and the wave period of 2.873 s. The influence of loaded weight representing solar panels is weak, and the impact of winds is acceptable, as the platform deviates 1.3 degrees from the equilibrium state under the test wind speed. Eventually, the effect of irregular waves on the HFS is presented with the critical parameters of mooring tension and pitch motion. The results show that the HFS has a good motion performance.

Funder

Shenzhen Municipal Science and Technology Innovation Council

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3