Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review

Author:

Beik Farhad,Williams Leon,Brown Tim,Wagland Stuart T.ORCID

Abstract

The utilisation of micro-scale thermal treatment technologies for non-sewered applications has been emerging as a prominent route for the safe treatment and disposal of high water content hazardous feedstock. This study provides a comprehensive review of the technological concepts practiced up to date in commercial/pilot and small scales for various types of solid fuels. The respective challenges are critically described and discussed to aid in the selection of promising technology for on-site sanitary applications. Furthermore, the challenges observed with the nominated (pyrolysis) technology are discussed in detail and addressed. This study suggests rapid energy recovery from by-products primarily made up of the highest yield of syngas with a desirable calorific value. The optimum operating ranges are discussed to ensure a reliable thermal conversion of sludge materials considering the application constraints and technology drawbacks. However, further studies are needed to investigate the uncertainties regarding emissions, energy consumption and overall associated costs.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3