Long-Term Effects of Fire Severity and Climatic Factors on Post-Forest-Fire Vegetation Recovery

Author:

Hao BinORCID,Xu Xu,Wu Fei,Tan Lei

Abstract

As a major disturbance to forest ecosystems, wildfires pose a serious threat to the ecological environment. Monitoring post-fire vegetation recovery is critical to quantifying the effects of wildfire on ecosystems and conducting forest resource management. Most previous studies have analyzed short-term (less than five years) post-fire recovery and limited the driving factors to temperature and precipitation. The lack of long-term and multi-faceted observational analyses has limited our understanding of the long-term effects of fire on vegetation recovery. This study utilized multi-source remote sensing data for a long time series analysis of post-fire vegetation recovery in China based on Google Earth Engine (GEE) cloud computing platform. Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Normalized Burn Ratio (NBR), and Normalized Difference Moisture Index (NDMI) were selected to quantify the low, moderate, and high severity of burned areas. Ridge Regression Model (RRM) was used to analyze the relationship between 15 driving factors and the vegetation regeneration process. The results show that it took at least 7–10 years for the vegetation index to recover to the pre-fire level after a forest fire. The recovery rate of high severity combustion areas was the fastest within the first two years. From the results of Ridge Regression, it came out that the overall fitting degree of the model with NDVI as the dependent variable was superior than that with EVI. The four variables of temperature, precipitation, soil temperature, and soil moisture were able to explain the change in more detail in vegetation indices. Our study enriches the research cases of global forest fires and vegetation recovery, provides a scientific basis for the sustainable development of forest ecosystems in China, and provides insight into environmental issues and resource management.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3