Soil Moisture Forecast Using Transfer Learning: An Application in the High Tropical Andes

Author:

Escobar-González Diego12ORCID,Villacís Marcos3ORCID,Páez-Bimos Sebastián3ORCID,Jácome Gabriel4ORCID,González-Vergara Juan56ORCID,Encalada Claudia1ORCID,Vanacker Veerle7ORCID

Affiliation:

1. Departamento de Gestión de Recursos Hídricos, Empresa Pública Metropolitana de Agua Potable y Saneamiento de Quito, EPMAPS Agua de Quito, Quito 170509, Ecuador

2. Facultad de Postgrado, Maestría en Ciencias de la Ingeniería para la Gestión de los Recursos Hídricos, Universidad Técnica del Norte (UTN), Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100150, Ecuador

3. Departamento de Ingeniería Civil y Ambiental & Centro de Investigación y Estudios en Ingeniería de los Recursos Hídricos, Escuela Politécnica Nacional, Quito 170525, Ecuador

4. Laboratorio de Geociencias y Medio Ambiente (GEOMA), Carrera de Recursos Naturales Renovables, Facultad de Ingeniería en Ciencias Agropecuarias y Ambientales, Universidad Técnica del Norte (UTN), Av. 17 de Julio 5-21 y Gral. José María Córdova, Ibarra 100150, Ecuador

5. Fondo Para la Protección del Agua (FONAG), Mariana de Jesús N32 y Martín de Utreras, Quito 170509, Ecuador

6. SDAS Researh Group, Ben Guerir 43150, Morocco

7. Earth and Climate Research, Earth and Life Institute, UCLouvain, 1348 Louvain-la-Neuve, Belgium

Abstract

Soil moisture is a critical variable in the hydrological cycle and the climate system, significantly impacting water resources, ecosystem functioning, and the occurrence of extreme events. However, soil moisture data are often scarce, and soil water dynamics are not fully understood in mountainous regions such as the tropical Andes of Ecuador. This study aims to model and predict soil moisture dynamics using in situ-collected hydrometeorological data for training and data-driven machine-learning techniques. Our results highlight the fundamental role of vegetation in controlling soil moisture dynamics and significant differences in soil water balance related to vegetation types and topography. A baseline model was developed to predict soil moisture dynamics using neural network techniques. Subsequently, by employing transfer-learning techniques, this model was effectively applied to different soil horizons and profiles, demonstrating its generalization capacity and adaptability. The use of neural network schemes and knowledge transfer techniques allowed us to develop predictive models for soil moisture trained on in situ-collected hydrometeorological data. The transfer-learning technique, which leveraged the knowledge from a pre-trained model to a model with a similar domain, yielded results with errors on the order of 1×10−6<ϵ<1×10−3. For the training data, the forecast of the base network demonstrated excellent results, with the lowest magnitude error metric RMSE equal to 4.77×10−6, and NSE and KGE both equal to 0.97. These models show promising potential to accurately predict short-term soil moisture dynamics with potential applications for natural hazard monitoring in mountainous regions.

Funder

the Académie de Recherche et Enseignement Supérieur de la Fédération Wallonie-Bruxelles

the Fondo para la Protección del Agua

the Empresa Pública Metropolitana de Agua Potable y Saneamiento

the Programa para el Manejo de Agua y Suelo (PROMAS) of the Facultad de Ingeniería Civil of the Universidad de Cuenca

the Empresa Pública Municipal de Telecomunicaciones

Agua Potable, Alcantarillado y Saneamiento de Cuenca

ElecAustro

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3