Application of Sine Cosine Egret Swarm Optimization Algorithm in Gas Turbine Cooling System

Author:

Li Tianyi,Liu Yanmei,Chen Zhen

Abstract

Gas turbine cooling system is a typical multivariable, strongly coupled, nonlinear, and uncertain MIMO system. In order to solve the control problem of pressure, flow, and temperature of the system, an intelligent approach is necessary and more appropriate. The current system control mainly depends on the experience of the staff, which exists problems such as high labor intensity, low work efficiency and low control accuracy. Lack of accurate models make parameters tune difficultly, and ordinary control methods are difficult to control complex gas turbine cooling system. In this paper, the system transfer function model is built based on the field data obtained under different working conditions and system identification method. The diagonal matrix decoupling method is used to weaken the correlation between variables and achieve independent control among variables. When optimizing the parameters of the controller, Sine Cosine Egret Swarm Optimization Algorithm is proposed. Egret Swarm Optimization Algorithm is composed of Sit-And-Wait strategy, random walk, and encirclement strategy. The sit-and-wait strategy is prone to premature convergence, which makes the optimized parameters unsuitable for gas turbine cooling system. Sine Cosine Algorithm is introduced to randomly use the sine-cosine function for the pseudo-gradient of the weights of the observation equation, thus expanding the search range of the population. Friedman tests prove that the deviation of SE-ESOA is within the allowable range. The results show that the result of Sine Cosine Egret Swarm Optimization Algorithm is more stable and accurate, and it is more suitable for gas turbine cooling system, which solve the pressure, flow, and temperature control problems of complex systems.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3