Affiliation:
1. School of Economics and Management, China Jiliang University, Hangzhou 310018, China
Abstract
The current fraud risk in digital finance is increasing year by year, and the mainstream solutions rely on the inherent characteristics of users, which makes it difficult to explain fraud behaviors and fraud behavior patterns are less researched. To address these problems, we propose an integrated multiple relational graphs fraud detection model Tri-RGCN-XGBoost, which analyzes the impact of user association patterns on fraud detection by mining the behavioral associations of users. The model builds a heterogeneous information network based on real transaction data, abstracts three types of bipartite graphs (user–device, user–merchant, and user–address), aggregates the information of the user’s neighbor nodes under the three types of behavioral patterns, and integrates the graph convolution classification results under the three behavioral patterns with the XGBoost model to achieve fraudulent user detection with integrated multiple relational graphs. The results show that the performance of this model in fraud identification is significantly improved, especially in reducing the fraudulent user underreporting rate. Further, the behavioral associations that play a key role in fraud user identification are analyzed in conjunction with shape value to provide a reference for fraud pattern mining.
Subject
Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software
Reference31 articles.
1. Financial Transaction Data Based Intelligent FraudGraph Network Detection;Sun;J. Appl. Sci.-Electron. Inf. Eng.,2020
2. Abnormal User Detection via Multiview Graph Clustering in the Mobile e-Commerce Network;Du;Wirel. Commun. Mob. Comput.,2022
3. Research progress in the application of graph anomaly detection in financial anti-fraud;Liu;Comput. Eng. Appl.,2022
4. Progress of Graph Neural Networks on Complex Graph Mining;Liu;J. Softw.,2022
5. Zhang, G., Wu, J., Yang, J., Beheshti, A., Xue, S., Zhou, C., and Sheng, Q.Z. (2021, January 7–10). FRAUDRE: Fraud detection dual-resistant to graph inconsistency and imbalance. Proceedings of the 2021 IEEE International Conference on Data Mining (ICDM), Auckland, New Zealand.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献