Performance Analysis of Adopting FSO Technology for Wireless Data Center Network

Author:

AlGhadhban Amer1ORCID,Abdulhussain Sadiq H.2,Alazmi Meshari3,Almalaq Abdulaziz1ORCID

Affiliation:

1. Electrical Engineering Department, College of Engineering, University of Ha’il, Ha’il 55476, Saudi Arabia

2. Department of Computer Engineering, University of Baghdad, Al-Jadriya, Baghdad 10071, Iraq

3. Computer Science Department, College of Computer Science and Engineering, University of Ha’il, Ha’il 55476, Saudi Arabia

Abstract

Free Space Optical Communication (FSO) is a promising technology to address wired Data Center Network (DCN) challenges like power consumption, low scalability and flexibility, congestion and cabling. Scholars have developed indirect line-of-sight (LoS) FSO schemes by reflecting the FSO beams via switchable mirrors. These schemes have introduced extra overhead delay to establish indirect LoS links, defined herein as the rack-to-rack FSO link setup process. The purpose of this work is to study and model this setup process with the consideration of the DC workloads. We found that the process involves a sequence of i.i.d random variables that contribute differently to its delay. Also, the process shows a statistical characteristic close to M/M/K. However, the number of FSO links, K, is random with time, which necessitates careful modeling. Finally, the PDF of the process total response time is close to the hypoexponential distribution, and it maintains its main characteristics even with different distributions for the service time.

Funder

Scientific Research Deanship at the University of Ha’il, Saudi Arabia

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3