Using Dual Attention BiLSTM to Predict Vehicle Lane Changing Maneuvers on Highway Dataset

Author:

Ashfaq Farzeen1,Ghoniem Rania M.2,Jhanjhi N. Z.1ORCID,Khan Navid Ali1,Algarni Abeer D.2

Affiliation:

1. School of Computer Science, SCS, Taylor’s University, Subang Jaya 47500, Malaysia

2. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

Abstract

In this research, we address the problem of accurately predicting lane-change maneuvers on highways. Lane-change maneuvers are a critical aspect of highway safety and traffic flow, and the accurate prediction of these maneuvers can have significant implications for both. However, current methods for lane-change prediction are limited in their ability to handle naturalistic driving scenarios and often require large amounts of labeled data. Our proposed model uses a bidirectional long short-term memory (BiLSTM) network to analyze naturalistic vehicle trajectories recorded from multiple sensors on German highways. To handle the temporal aspect of vehicle behavior, we utilized a sliding window approach, considering both the preceding and following vehicles’ trajectories. To tackle class imbalances in the data, we introduced rolling mean computed weights. Our extensive feature engineering process resulted in a comprehensive feature set to train the model. The proposed model fills the gap in the state-of-the-art lane change prediction methods and can be applied in advanced driver assistance systems (ADAS) and autonomous driving systems. Our results show that the BiLSTM-based approach with the sliding window technique effectively predicts lane changes with 86% test accuracy and a test loss of 0.325 by considering the context of the input data in both the past and future. The F1 score of 0.52, precision of 0.41, recall of 0.75, accuracy of 0.86, and AUC of 0.81 also demonstrate the model’s high ability to distinguish between the two target classes. Furthermore, the model achieved an accuracy of 83.65% with a loss value of 0.3306 on the other half of the data samples, and the validation accuracy was observed to improve over these epochs, reaching the highest validation accuracy of 92.53%. The F1 score of 0.51, precision of 0.36, recall of 0.89, accuracy of 0.82, and AUC of 0.85 on this data sample also demonstrate the model’s strong ability to identify both positive and negative classes. Overall, our proposed approach outperforms existing methods and can significantly contribute to improving highway safety and traffic flow.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Reference50 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3