Forecasting per Capita Energy Consumption in China Using a Spatial Discrete Grey Prediction Model

Author:

Wang Huiping1ORCID,Zhang Zhun1

Affiliation:

1. Western Collaborative Innovation Research Center for Energy Economy and Regional Development, Xi’an University of Finance and Economics, Xi’an 710100, China

Abstract

To overcome the limitations of the present grey models in spatial data analysis, a spatial weight matrix is incorporated into the grey discrete model to create the SDGM(1,1,m) model, and the L1-SDGM(1,1,m) model is proposed, considering the time lag effect to realize the simultaneous forecasting of spatial data. The validation of the SDGM(1,1,m) and L1-SDGM(1,1,m) models is achieved, and finally, the per capita energy consumption levels (PCECs) of 30 provinces in China from 2020 to 2025 is predicted using SDGM(1,1,m) with a metabolic mechanism. We draw the following conclusions. First, the SDGM(1,1,m) and L1-SDGM(1,1,m) models established in this paper are reasonable and improve forecasting accuracy while supporting interactive regional forecasting. Second, although SDGM(1,1,m) resembles the DGM(1,n) model, their modeling conditions and targets are different. Third, the SDGM(1,1,m) and L1-SDGM(1,1,m) models can be used to effectively analyze the spatial spillover effects within the selected modeling interval while achieving accurate predictions; notably, from 2010 to 2017, the PCECs of Inner Mongolia and Qinghai were most affected by spatial factors, while the PCECs of Jilin, Jiangxi, and other provinces were influenced little by spatial factors. Fourth, predictions indicate that the PCECs of most Chinese provinces will increase under the current grey conditions, while the PCECs of provinces such as Beijing are expected to decrease.

Funder

National Social Science Fund of China

Social Science Project of Shaanxi

National Statistical Science Research Project

Humanities and Social Science Project of Chinese Ministry of Education

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3