Optimizing Maintenance Resource Scheduling and Site Selection for Urban Metro Systems: A Multi-Objective Approach to Enhance System Resilience

Author:

Tang Lingyi1,Chen Shiqi1,Li Qiming1

Affiliation:

1. Department of Construction Management and Real Estate, School of Civil Engineering, Southeast University, Nanjing 211189, China

Abstract

This study developed an optimization model for the strategic location of maintenance resource supply sites and the scheduling of multiple resources following failures in urban metro systems, with the objective of enhancing system resilience. The model employs a multi-objective optimization framework, focusing primarily on minimizing resource scheduling time and reducing costs. It incorporates critical factors such as spatial location, network topology, station size, and passenger flow. A hybrid method, combining the non-dominated sorting genetic algorithm III and the technique for order of preference by similarity to ideal solution, is used to solve the model, with its effectiveness confirmed through a case study of the Nanjing Metro system. The simulation results yielded an optimal number of 21 maintenance resource supply stations and provided their placement. In the event of large-scale failures, the optimal resource scheduling strategy ensures demand satisfaction rates exceed 90% at critical stations, maintaining an overall rate of 87.09%, therefore significantly improving resource scheduling efficiency and the system’s emergency response capabilities and enhancing the physical resilience and recovery capabilities of the urban metro system. Moreover, the model accounts for economic factors, striving to balance emergency response capabilities with production continuity and cost efficiency through effective maintenance strategies and resource utilization. This approach provides a systematic framework for urban metro systems to manage sudden failures, ensuring rapid recovery to normal operations and minimizing operational disruptions in scenarios of limited resources.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3