Hierarchical Coordinated Energy Management Strategy for Hybrid Energy Storage System in Electric Vehicles Considering the Battery’s SOC

Author:

Huang Wenya12,Lu Zhangyu1ORCID,Cao Xu1,Hou Yingjun1

Affiliation:

1. The Key Laboratory of Vehicle Power and Transmission System, Hunan Institute of Engineering, Xiangtan 411104, China

2. School of Management, Hunan Institute of Engineering, Xiangtan 411104, China

Abstract

This paper combines two types of energy storage components, the battery and supercapacitor (SC), to form a fully active hybrid energy storage system (HESS) as a power source for electric vehicles (EVs). At the same time, a hierarchical coordinated energy management strategy based on model predictive control (HCEMS-MPC) is presented. Firstly, the mathematical model of the fully active HESS is obtained based on Kirchhoff’s law and state-space modeling technology. Secondly, considering the state of charge (SOC) of the battery, a fuzzy-control-based upper-level energy management strategy (EMS) is proposed to optimize power allocation and to generate a reference current for a lower-level current controller. Then, a lower-level current predictive controller is designed to achieve accurate current tracking. Finally, a lower-level voltage sliding mode controller is designed to stabilize the bus voltage. Compared with previous works, the HCEMS-MPC strategy only needs to adjust the weight matrix and the reaching term to avoid the problem of excessive controller parameters. The simulation results, under different driving conditions, show that the HCEMS-MPC strategy has a better performance with respect to its fast response, error reduction, and robust stability. In addition, the SOC of the battery decreases more slowly, and the final SOC value significantly increases, thereby extending the single-discharge cycle time of the battery and improving the service life of the battery.

Funder

National Natural Science Foundation of China

Natural Science Foundation of the Hunan Province

Scientific Research Fund of the Hunan Provincial Education Department

Scientific Research Project of the Hunan Institute of Engineering

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3