Deep-Learning-Based Floor Path Model for Route Tracking of Autonomous Vehicles

Author:

Erginli MustafaORCID,Cil IbrahimORCID

Abstract

Real-time route tracking is an important research topic for autonomous vehicles used in industrial facilities. Traditional methods such as copper line tracking on the ground, wireless guidance systems, and laser systems are still used in route tracking. In this study, a deep-learning-based floor path model for route tracking of autonomous vehicles is proposed. A deep-learning floor path model and algorithm have been developed for highly accurate route tracking, which avoids collisions of vehicles and follows the shortest route to reach the destination. The floor path model consists of markers. Routes in the floor path model are created by using these markers. The floor path model is transmitted to autonomous vehicles as a vector by a central server. The server dispatches the target marker address to the vehicle to move. The vehicle calculates all possible routes to this address and chooses the shortest one. Marker images on the selected route are processed using image processing and classified with a pre-trained deep-CNN model. If the classified image and the image on the selected route are the same, the vehicle proceeds toward its destination. While the vehicle moves on the route, it sends the last classified marker to the server. Other autonomous vehicles use this marker to determine the location of this vehicle. Other vehicles on the route wait to avoid a collision. As a result of the experimental studies we have carried out, the route tracking of the vehicles has been successfully achieved.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Reference43 articles.

1. CNN Based Factory Lane Marker Recognition for Indoor Path Tracking of Automated Guided Vehicle;Jung,2018

2. Research and Develop of AGV Platform for the Logistics Warehouse Environment

3. Intersection Recognition and Guide-Path Selection for a Vision-Based AGV in a Bidirectional Flow Network

4. A Review On Facility Layout Design Of An Automated Guided Vehicle In Flexible Manufacturing System

5. Tiny ImageNet Classification with Convolutional Neural Networks http://cs231n.stanford.edu/reports/2015/pdfs/leonyao_final.pdf

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3