Policy Analysis of Biomass Recycling Supply Chain Considering Carbon and Pollution Emission Reduction—Taking China’s Straw Subsidy Policy for Example

Author:

Yu Long12,Sun Jingwen3,Liu Weina2,Zhang Wengang3,Sun Liao3,Wu Jun3

Affiliation:

1. School of Economics and Management, Chinese Academy of Sciences University, Beijing 100190, China

2. Yunnan Water Investment Limited Corporation, Kunming 650106, China

3. School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China

Abstract

In recent years, global environmental problems such as air pollution and the greenhouse effect have become more and more serious. The utilization of biomass energy not only can promote low-carbon transformation to establish a competitive advantage through value creation under the goals of carbon peaking and carbon neutrality but is also an important force in solving environmental problems. Government subsidy policies play an important role in promoting the development of biomass energy utilization. Taking straw as an example, this paper constructs a straw recycling supply chain system dynamics model consisting of farmers, acquisition stations, power plants, and pyrolysis plants based on a real-world case. Two types of straw processing, namely power generation and pyrolysis, are considered in the model. This paper analyzes the economic and environmental impacts of three subsidy policies, namely the unified rate policy, the linear growth policy, and a two-step policy, by comparing the profit, carbon, and pollution emission reduction benefits of the supply chain under different subsidy scenarios. The result shows that, among the three subsidy policies, the unified rate policy shows the best-promoting effect. The research results and policy implications in this paper could be a reference for governments trying to formulate subsidy policies for developing biomass energy utilization.

Funder

National Social Science Fundation of China

Funds for First-class Discipline Construction

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Reference59 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3