A Gaussian-Shaped Fuzzy Inference System for Multi-Source Fuzzy Data

Author:

Zhang YunORCID,Qin ChaoxiaORCID

Abstract

Fuzzy control theory has been extensively used in the construction of complex fuzzy inference systems. However, we argue that existing fuzzy control technologies focus mainly on the single-source fuzzy information system, disregarding the complementary nature of multi-source data. In this paper, we develop a novel Gaussian-shaped Fuzzy Inference System (GFIS) driven by multi-source fuzzy data. To this end, we first propose an interval-value normalization method to address the heterogeneity of multi-source fuzzy data. The contribution of our interval-value normalization method involves mapping heterogeneous fuzzy data to a unified distribution space by adjusting the mean and variance of data from each information source. As a result of combining the normalized descriptions from various sources for an object, we can obtain a fused representation of that object. We then derive an adaptive Gaussian-shaped membership function based on the addition law of the Gaussian distribution. GFIS uses it to dynamically granulate fusion inputs and to design inference rules. This proposed membership function has the advantage of being able to adapt to changing information sources. Finally, we integrate the normalization method and adaptive membership function to the Takagi–Sugeno (T–S) model and present a modified fuzzy inference framework. Applying our methodology to four datasets, we confirm that the data do lend support to the theory implying the improved performance and effectiveness.

Funder

This research was supported by the Science and Technology Research Program of Chongqing Municipal Education Commission

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3