Transfer EEG Emotion Recognition by Combining Semi-Supervised Regression with Bipartite Graph Label Propagation

Author:

Li WenzhengORCID,Peng YongORCID

Abstract

Individual differences often appear in electroencephalography (EEG) data collected from different subjects due to its weak, nonstationary and low signal-to-noise ratio properties. This causes many machine learning methods to have poor generalization performance because the independent identically distributed assumption is no longer valid in cross-subject EEG data. To this end, transfer learning has been introduced to alleviate the data distribution difference between subjects. However, most of the existing methods have focused only on domain adaptation and failed to achieve effective collaboration with label estimation. In this paper, an EEG feature transfer method combined with semi-supervised regression and bipartite graph label propagation (TSRBG) is proposed to realize the unified joint optimization of EEG feature distribution alignment and semi-supervised joint label estimation. Through the cross-subject emotion recognition experiments on the SEED-IV data set, the results show that (1) TSRBG has significantly better recognition performance in comparison with the state-of-the-art models; (2) the EEG feature distribution differences between subjects are significantly minimized in the learned shared subspace, indicating the effectiveness of domain adaptation; (3) the key EEG frequency bands and channels for cross-subject EEG emotion recognition are achieved by investigating the learned subspace, which provides more insights into the study of EEG emotion activation patterns.

Funder

Zhejiang Provincial Natural Science Foundation of China

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Reference52 articles.

1. Sensitivity to expression of emotional meaning in three modes of communication;Beldoch,1964

2. Emotional Intelligence

3. Emotion Recognition and Understanding for Emotional Human-Robot Interaction Systems;Chen,2020

4. Natural Systems Thinking and the Human Family

5. Can Emotion be Transferred? – A Review on Transfer Learning for EEG-Based Emotion Recognition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3