Model Signatures for the Integration of Simulation Models into System Models

Author:

Zerwas Thilo,Jacobs GeorgORCID,Kowalski Julia,Husung StephanORCID,Gerhard DetlefORCID,Rumpe Bernhard,Zeman Klaus,Vafaei SeyedmohammadORCID,König FlorianORCID,Höpfner GregorORCID

Abstract

Model-based systems engineering (MBSE) is an auspicious approach to the virtual development of cyber-physical systems. The behavior of the system’s elements is thus represented by specialized simulation models that are integrated into the descriptive SysML-based system model. Although many simulation models have been developed in research for the common system elements for various purposes and fidelities, their integration remains a major challenge: the parameter interfaces of the simulation models must be coupled with each other and with the parameters of the system elements in such a way that they are correctly parameterized. So far, this coupling can only be carried out by model experts in a time-consuming and error-prone manner. Therefore, in this paper, we first propose a concept that structures the system element parameters for targeted use in validation and design cases. Second, we propose a model signature for simulation models that differentiates its parameters by input, internal, output, and model parameters and specifies them with spatial and temporal dimensions as well as admissible ranges, among others. Based on the two contributions, domain models can be validly and automatable coupled and used for the virtual development of system elements in model-based systems engineering.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Reference56 articles.

1. Systems Engineering Vision

2. Allgemeine Technologie: Eine Systemtheorie der Technik;Ropohl,2009

3. Function-Oriented Model-Based Product Development;Jacobs,2022

4. Classification of Simulation Models for the Model-based Design of Plastic-Metal Hybrid Joints

5. Model-Based Systems Engineering: A New Way for Function-Driven Product Development

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3