Enhancing Smart IoT Malware Detection: A GhostNet-based Hybrid Approach

Author:

Almazroi Abdulwahab Ali1ORCID,Ayub Nasir2ORCID

Affiliation:

1. Department of Information Technology, College of Computing and Information Technology at Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia

2. Department of Creative Technologies, Air University Islamabad, Islamabad 44000, Pakistan

Abstract

The Internet of Things (IoT) constitutes the foundation of a deeply interconnected society in which objects communicate through the Internet. This innovation, coupled with 5G and artificial intelligence (AI), finds application in diverse sectors like smart cities and advanced manufacturing. With increasing IoT adoption comes heightened vulnerabilities, prompting research into identifying IoT malware. While existing models excel at spotting known malicious code, detecting new and modified malware presents challenges. This paper presents a novel six-step framework. It begins with eight malware attack datasets as input, followed by insights from Exploratory Data Analysis (EDA). Feature engineering includes scaling, One-Hot Encoding, target variable analysis, feature importance using MDI and XGBoost, and clustering with K-Means and PCA. Our GhostNet ensemble, combined with the Gated Recurrent Unit Ensembler (GNGRUE), is trained on these datasets and fine-tuned using the Jaya Algorithm (JA) to identify and categorize malware. The tuned GNGRUE-JA is tested on malware datasets. A comprehensive comparison with existing models encompasses performance, evaluation criteria, time complexity, and statistical analysis. Our proposed model demonstrates superior performance through extensive simulations, outperforming existing methods by around 15% across metrics like AUC, accuracy, recall, and hamming loss, with a 10% reduction in time complexity. These results emphasize the significance of our study’s outcomes, particularly in achieving cost-effective solutions for detecting eight malware strains.

Funder

Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3