A Deep-Reinforcement-Learning-Based Digital Twin for Manufacturing Process Optimization

Author:

Khdoudi Abdelmoula1ORCID,Masrour Tawfik2ORCID,El Hassani Ibtissam2ORCID,El Mazgualdi Choumicha1

Affiliation:

1. Artificial Intelligence for Engineering Science Team, Moulay Ismail University, Meknes 50050, Morocco

2. Mathematics, Computer Science and Engineering Department, University of Quebec at Rimouski, Rimouski, QC G5L 3A1, Canada

Abstract

In the context of Industry 4.0 and smart manufacturing, production factories are increasingly focusing on process optimization, high product customization, quality improvement, cost reduction, and energy saving by implementing a new type of digital solutions that are mainly driven by Internet of Things (IoT), artificial intelligence, big data, and cloud computing. By the adoption of the cyber–physical systems (CPSs) concept, today’s factories are gaining in synergy between the physical and the cyber worlds. As a fast-spreading concept, a digital twin is considered today as a robust solution for decision-making support and optimization. Alongside these benefits, sectors are still working to adopt this technology because of the complexity of modeling manufacturing operations as digital twins. In addition, attempting to use a digital twin for fully automatic decision-making adds yet another layer of complexity. This paper presents our framework for the implementation of a full-duplex (data and decisions) specific-purpose digital twin system for autonomous process control, with plastic injection molding as a practical use-case. Our approach is based on a combination of supervised learning and deep reinforcement learning models that allows for an automated updating of the virtual representation of the system, in addition to an intelligent decision-making process for operational metrics optimization. The suggested method allows for improvements in the product quality while lowering costs. The outcomes demonstrate how the suggested structure can produce high-quality output with the least amount of human involvement. This study shows how the digital twin technology can improve the productivity and effectiveness of production processes and advances the use of the technology in the industrial sector.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3