Developing Multi-Labelled Corpus of Twitter Short Texts: A Semi-Automatic Method

Author:

Liu Xuan1ORCID,Zhou Guohui1,Kong Minghui1,Yin Zhengtong2ORCID,Li Xiaolu3,Yin Lirong4,Zheng Wenfeng5ORCID

Affiliation:

1. School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu 611731, China

2. College of Resource and Environment Engineering, Guizhou University, Guiyang 550025, China

3. School of Geographical Sciences, Southwest University, Chongqing 400715, China

4. Department of Geography and Anthropology, Louisiana State University, Baton Rouge, LA 70803, USA

5. School of Automation, University of Electronic Science and Technology of China, Chengdu 611731, China

Abstract

Facing fast-increasing electronic documents in the Digital Media Age, the need to extract textual features of online texts for better communication is growing. Sentiment classification might be the key method to catch emotions of online communication, and developing corpora with annotation of emotions is the first step to achieving sentiment classification. However, the labour-intensive and costly manual annotation has resulted in the lack of corpora for emotional words. Furthermore, single-label semantic corpora could hardly meet the requirement of modern analysis of complicated user’s emotions, but tagging emotional words with multiple labels is even more difficult than usual. Improvement of the methods of automatic emotion tagging with multiple emotion labels to construct new semantic corpora is urgently needed. Taking Twitter short texts as the case, this study proposes a new semi-automatic method to annotate Internet short texts with multiple labels and form a multi-labelled corpus for further algorithm training. Each sentence is tagged with both the emotional tendency and polarity, and each tweet, which generally contains several sentences, is tagged with the first two major emotional tendencies. The semi-automatic multi-labelled annotation is achieved through the process of selecting the base corpus and emotional tags, data preprocessing, automatic annotation through word matching and weight calculation, and manual correction in case of multiple emotional tendencies are found. The experiments on the Sentiment140 published Twitter corpus demonstrate the effectiveness of the proposed approach and show consistency between the results of semi-automatic annotation and manual annotation. By applying this method, this study summarises the annotation specification and constructs a multi-labelled emotion corpus with 6500 tweets for further algorithm training.

Funder

Sichuan Science and Technology Program

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Cited by 136 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3