Optimization Model for the Energy Supply Chain Management Problem of Supplier Selection in Emergency Procurement

Author:

Noh JiseongORCID,Hwang Seung-June

Abstract

In energy supply chain management (ESCM), the supply chain members try to make long-term contracts for supplying energy stably and reducing the cost. Currently, optimizing ESCM is a complex problem with two social issues: environmental regulations and uncertainties. First, environmental regulations have been tightened in countries around the world, leading to eco-friendly management. As a result, it has become imperative for the energy buyer to consider not only the total operating cost but also carbon emissions. Second, the uncertainties, such as pandemics and wars, have had a serious impact on handling ESCM. Since the COVID-19 pandemic disrupted the supply chain, the supply chain members adopted emergency procurement for sustainable operations. In this study, we developed an optimization model using mixed-integer linear programming to solve ESCM with supplier selection problems in emergency procurement. The model considers a single thermal power plant and multiple fossil fuel suppliers. Because of uncertainties, energy demand may suddenly change or may not be supplied on time. To better manage these uncertainties, we developed a rolling horizon method (RHM), which is a well-known method for solving deterministic problems in mathematical programming models. To test the model and the RHM, we conducted three types of numerical experiments. First, we examined replenishment strategies and schedules under uncertain demands. Second, we conducted a supplier selection experiment within a limited budget and carbon emission regulations. Finally, we conducted a sensitivity analysis of carbon emission limits. The results show that our RHM can handle ESCM under uncertain situations effectively.

Funder

Ministry of Education of the Republic of Korea

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Reference25 articles.

1. Energy supply planning and supply chain optimization under uncertainty;Lee;J. Process Control,2014

2. Huang, H., Li, X., and Liu, S. (2022). Loss Aversion Order Strategy in Emergency Procurement during the COVID-19 Pandemic. Sustainability, 14.

3. Economic value of US fossil fuel electricity health impacts;Machol;Environ. Int.,2013

4. Sustainable design and optimization of coal supply chain network under different carbon emission policies;Li;J. Clean. Prod.,2020

5. IEA (2020). Global Energy Demand to Plunge This Year as a Result of the Biggest Shock Since the Second World War, IEA. Available online: https://www.iea.org/news/global-energy-demand-to-plunge-this-year-as-a-result-of-the-biggest-shock-since-the-second-world-war.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3