Applicability of the Future State Maximization Paradigm to Agent-Based Modeling: A Case Study on the Emergence of Socially Sub-Optimal Mobility Behavior

Author:

Plakolb Simon12ORCID,Strelkovskii Nikita2ORCID

Affiliation:

1. Graz Schumpeter Centre, University of Graz, Universitaetsstraße 15F, AT-8010 Graz, Austria

2. Advancing Systems Analysis Program, International Institute for Applied Systems Analysis, Schlossplatz 1, AT-2361 Laxenburg, Austria

Abstract

Novel developments in artificial intelligence excel in regard to the abilities of rule-based agent-based models (ABMs), but are still limited in their representation of bounded rationality. The future state maximization (FSX) paradigm presents a promising methodology for describing the intelligent behavior of agents. FSX agents explore their future state space using “walkers” as virtual entities probing for a maximization of possible states. Recent studies have demonstrated the applicability of FSX to modeling the cooperative behavior of individuals. Applied to ABMs, the FSX principle should also represent non-cooperative behavior: for example, in microscopic traffic modeling, there is a need to model agents that do not fully adhere to the traffic rules. To examine non-cooperative behavior arising from FSX, we developed a road section model populated by agent-cars endowed with an augmented FSX decision making algorithm. Simulation experiments were conducted in four scenarios modeling various traffic settings. A sensitivity analysis showed that cooperation among the agents was the result of a balance between exploration and exploitation. We showed that our model reproduced several patterns observed in rule-based traffic models. We also demonstrated that agents acting according to FSX can stop cooperating. We concluded that FSX can be useful for studying irrational behavior in certain traffic settings, and that it is suitable for ABMs in general.

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3