VBQ-Net: A Novel Vectorization-Based Boost Quantized Network Model for Maximizing the Security Level of IoT System to Prevent Intrusions

Author:

Perumal Ganeshkumar1,Subburayalu Gopalakrishnan2,Abbas Qaisar1ORCID,Naqi Syed Muhammad3,Qureshi Imran1

Affiliation:

1. College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia

2. Department of Information Technology, Hindustan Institute of Technology and Science, Kelambakkam, Chennai 603103, India

3. Department of Computer Science, Quaid-i-Azam University, Islamabad 44000, Pakistan

Abstract

Data sharing with additional devices across wireless networks is made simple and advantageous by the Internet of Things (IoT), an emerging technology. However, IoT systems are more susceptible to cyberattacks because of their continued growth and technological advances, which could lead to powerful assaults. An intrusion detection system is one of the key defense mechanisms for information and communications technology. The primary shortcomings that plague current IoT security frameworks are their inability to detect intrusions properly, their substantial latency, and their prolonged processing time and delay. Therefore, this work develops a clever and innovative security architecture called Vectorization-Based Boost Quantized Network (VBQ-Net) for protecting IoT networks. Here, a Vector Space Bag of Words (VSBW) methodology is used to reduce the dimensionality of features and identify a key characteristic from the featured data. In addition, a brand-new classification technique, called Boosted Variance Quantization Neural Networks (BVQNNs), is used to classify the different types of intrusions using a weighted feature matrix. A Multi-Hunting Reptile Search Optimization (MH-RSO) algorithm is employed during categorization to calculate the probability value for selecting the right choices while anticipating intrusions. In this study, the most well-known and current datasets, such as IoTID-20, IoT-23, and CIDDS-001, are used to validate and evaluate the effectiveness of the proposed methodology. By evaluating the proposed approach on standard IoT datasets, the study seeks to address the limitations of current IoT security frameworks and provide a more effective defense mechanism against cyberattacks on IoT systems.

Funder

Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3