Dynamic Research on the Collaborative Governance in Urban and Rural Black-Odorous Water: A Tripartite Stochastic Evolutionary Game Perspective

Author:

Peng Kangjun1,Dong Changqi1ORCID,Mi Jianing1

Affiliation:

1. School of Management, Harbin Institute of Technology, Harbin 150001, China

Abstract

The issue of black-odorous water (BOW) represents a formidable challenge to the current aquatic ecosystems, and its governance exhibits characteristics of low efficiency, susceptibility to relapse, and fragmented management under the Central Environmental Protection Inspection, thereby emerging as a dynamically complex issue in the ecological governance of urban and rural settings. This study introduces Gaussian white noise to simulate environmental uncertainty and design a stochastic evolutionary game model encompassing the central government, local governments, and societal forces based on evolutionary game theory and classical governance theories and concepts. Numerical simulations are conducted to explore trajectories of the strategic evolution of various subjects influenced by numerous factors. Results indicate that under the environment of random disturbances, the strategies of the game subjects show significant fluctuations, but actively cultivating the subject’s initial willingness facilitates collaboration governance in inspection. Moreover, joint construction of a “belief system” by multi-subjects, the intensity of inspection interventions, the integration of heterogeneous resources, and effective punitive measures all influence the governance of BOW, but the efficiency of resource allocation should be considered throughout the governance process. Recommendations are made finally for collaborative governance of urban and rural BOW, promoting the sustainable development of the ecological environment.

Funder

Major Program of the National Social Science Foundation of China

China Scholarship Council

Publisher

MDPI AG

Reference84 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3