Parallel Learning of Dynamics in Complex Systems

Author:

Huang XueqinORCID,Zhu Xianqiang,Xu Xiang,Zhang Qianzhen,Liang Ailin

Abstract

Dynamics always exist in complex systems. Graphs (complex networks) are a mathematical form for describing a complex system abstractly. Dynamics can be learned efficiently from the structure and dynamics state of a graph. Learning the dynamics in graphs plays an important role in predicting and controlling complex systems. Most of the methods for learning dynamics in graphs run slowly in large graphs. The complexity of the large graph’s structure and its nonlinear dynamics aggravate this problem. To overcome these difficulties, we propose a general framework with two novel methods in this paper, the Dynamics-METIS (D-METIS) and the Partitioned Graph Neural Dynamics Learner (PGNDL). The general framework combines D-METIS and PGNDL to perform tasks for large graphs. D-METIS is a new algorithm that can partition a large graph into multiple subgraphs. D-METIS innovatively considers the dynamic changes in the graph. PGNDL is a new parallel model that consists of ordinary differential equation systems and graph neural networks (GNNs). It can quickly learn the dynamics of subgraphs in parallel. In this framework, D-METIS provides PGNDL with partitioned subgraphs, and PGNDL can solve the tasks of interpolation and extrapolation prediction. We exhibit the universality and superiority of our framework on four kinds of graphs with three kinds of dynamics through an experiment.

Funder

National Natural Science Foundation of China

Changsha Science and Technology Bureau

Huxiang Youth Talent Support Program

Publisher

MDPI AG

Subject

Information Systems and Management,Computer Networks and Communications,Modeling and Simulation,Control and Systems Engineering,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3