Applying MMD Data Mining to Match Network Traffic for Stepping-Stone Intrusion Detection

Author:

Yang JianhuaORCID,Wang Lixin

Abstract

A long interactive TCP connection chain has been widely used by attackers to launch their attacks and thus avoid detection. The longer a connection chain, the higher the probability the chain is exploited by attackers. Round-trip Time (RTT) can represent the length of a connection chain. In order to obtain the RTTs from the sniffed Send and Echo packets in a connection chain, matching the Sends and Echoes is required. In this paper, we first model a network traffic as the collection of RTTs and present the rationale of using the RTTs of a connection chain to represent the length of the chain. Second, we propose applying MMD data mining algorithm to match TCP Send and Echo packets collected from a connection. We found that the MMD data mining packet-matching algorithm outperforms all the existing packet-matching algorithms in terms of packet-matching rate including sequence number-based algorithm, Yang’s approach, Step-function, Packet-matching conservative algorithm and packet-matching greedy algorithm. The experimental results from our local area networks showed that the packet-matching accuracy of the MMD algorithm is 100%. The average packet-matching rate of the MMD algorithm obtained from the experiments conducted under the Internet context can reach around 94%. The MMD data mining packet-matching algorithm can fix the issue of low packet-matching rate faced by all the existing packet-matching algorithms including the state-of-the-art algorithm. It is applicable to network-based stepping-stone intrusion detection.

Funder

National Security Agency

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3