Design of Experiments to Compare the Mechanical Properties of Polylactic Acid Using Material Extrusion Three-Dimensional-Printing Thermal Parameters Based on a Cyber–Physical Production System

Author:

Castillo Miguel1,Monroy Roberto1ORCID,Ahmad Rafiq1ORCID

Affiliation:

1. Smart & Sustainable Manufacturing Systems Laboratory (SMART LAB), Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada

Abstract

The material extrusion 3D printing process known as fused deposition modeling (FDM) has recently gained relevance in the additive manufacturing industry for large-scale part production. However, improving the real-time monitoring of the process in terms of its mechanical properties remains important to extend the lifespan of numerous critical applications. To enhance the monitoring of mechanical properties during printing, it is necessary to understand the relationship between temperature profiles and ultimate tensile strength (UTS). This study uses a cyber–physical production system (CPPS) to analyze the impact of four key thermal parameters on the tensile properties of polylactic acid (PLA). Layer thickness, printing speed, and extrusion temperature are the most influential factors, while bed temperature has less impact. The Taguchi L-9 array and the full factorial design of experiments were implemented along with the deposited line’s local fused temperature profile analysis. Furthermore, correlations between temperature profiles with the bonding strength during layer adhesion and part solidification can be stated. The results showed that layer thickness is the most important factor, followed by printing speed and extrusion temperature, with very close influence between each other. The lowest impact is attributed to bed temperature. In the experiments, the UTS values varied from 46.38 MPa to 56.19 MPa. This represents an increase in the UTS of around 17% from the same material and printing design conditions but different temperature profiles. Additionally, it was possible to observe that the influence of the parameter variations was not linear in terms of the UTS value or temperature profiles. For example, the increase in the UTS at the 0.6 mm layer thickness was around four times greater than the increase at 0.4 mm. Finally, even when it was found that an increase in the layer temperature led to an increase in the value of the UTS, for some of the parameters, it could be observed that it was not the main factor that caused the UTS to increase. From the monitoring conditions analyzed, it was concluded that the material requires an optimal thermal transition between deposition, adhesion, and layer solidification in order to result in part components with good mechanical properties. A tracking or monitoring system, such as the one designed, can serve as a potential tool for reducing the anisotropy in part production in 3D printing systems.

Funder

Natural Sciences and Engineering Research Council of Canada

Alberta Innovates

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference52 articles.

1. 3-D Printing: The New Industrial Revolution;Berman;Bus. Horiz.,2012

2. An Overview on 3D Printing Technology: Technological, Materials, and Applications;Shahrubudin;Procedia Manuf.,2019

3. Causes of Desktop FDM Fabrication Failures in an Open Studio Environment;Song;Procedia CIRP,2019

4. On the Use of Machine Learning for Additive Manufacturing Technology in Industry 4.0;Banadaki;J. Comput. Sci. Inf. Technol.,2019

5. In-Line Rheological Monitoring of Fused Deposition Modeling;Coogan;J. Rheol.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3