Abstract
Municipal solid waste management is considered one of the major environmental challenges. Organic waste, especially food waste, usually accounts for over 50 wt% of municipal solid waste, yet, in most countries, it is the least recovered material. Decentralized composting aims to develop a new framework of waste management, building a closed-loop system for the composting of home, community, and commercial organic waste in urban environments. However, in some cases, decentralized composting is not economically and/or environmentally viable. Even when it is viable, various barriers and challenges need to be addressed in many cases. Different models in the literature address certain aspects of organic waste management, such as food waste treatment technology, recovery of energy, site selection, or environmental impact. The objective of this study is to provide guidelines and a methodological framework to quantify economic, social, operational, environmental, and regulatory aspects, in order to examine the viability and feasibility of decentralized composting projects at any given location. The decentralized composting analysis model proposed in this study has been developed with an innovative approach to decentralized composting project planning and design, an approach that is both holistic and very practical. The innovative model incorporates various aspects to examine the viability of decentralized composting projects based on benefit/cost criteria. In this respect, a result obtained through another model that examines a specific aspect of decentralized composting can be used as input for the model presented here. The decentralized composting analysis model provides a powerful tool for decision makers, based on the quantification of the decentralized composting project characteristics, and a benefit/cost index that takes into account the various impact variables. The decentralized composting analysis model allows examining the viability of the decentralized composting project in different scenarios, locations and options, and can help indicate the most viable alternative. In this paper, we describe the decentralized composting analysis model and its methodological framework, along with numerical examples to demonstrate its implementation.
Funder
The European Union under the ENI CBC Mediterranean Sea Basin Programme
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction