Influence of Mowing and Trampling on the Allelopathy and Weed Suppression Potential of Digitaria ciliaris and Cyperus microiria

Author:

Biramahire BienvenuORCID,Appiah Kwame SarpongORCID,Tojo Seishu,Fujii YoshiharuORCID,Chosa Tadashi

Abstract

A long-term, sustainable solution to weed infestation is extremely desirable because weeds have the potential to reduce crop productivity and the aesthetic appeal of the environment. In this study, the impacts of mowing and varying degrees of trampling pressure on the suppression of weeds, alongside wound-induced changes in the allelopathic potential, of the rhizosphere soil and the root exudates of southern crabgrass (Digitaria ciliaris) and Asian flatsedge (Cyperus microiria) were evaluated under both field and greenhouse conditions. The field study results showed that all trampling treatments induced the relative suppression of weed growth. Grass weeds showed higher resistance to trampling than broad-leaved weeds. However, laboratory bioassays showed that light trampling caused a significant increase in the growth-inhibitory effects of southern crabgrass rhizosphere soil on lettuce. Moreover, mowing (9.11% of control) and trampling (16.4% of control) resulted in a marginal increase in the growth-inhibitory effects of root exudates released from southern crabgrass. Furthermore, the growth-inhibitory activities of the Asian flatsedge rhizosphere soil were significantly reduced after heavy trampling pressure. Moreover, mowing and trampling resulted in marginal reductions in the growth-inhibitory activities of root exudates released from Asian flatsedge against lettuce (i.e., 18.7% and 28.5%, respectively). In general, mowing and varying degrees of trampling induced contrasting and integrated impacts on weed suppression as well as the allelopathic potential of both southern crabgrass and Asian flatsedge.

Funder

JST-CREST

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3