Predicting Model for Air Transport Demand under Uncertainties Based on Particle Filter

Author:

Chen BinORCID,Wu Jin

Abstract

The outbreak of the COVID-19 has brought about huge economic loss and civil aviation industries all over the world have suffered severe damage. An effective method is urgently needed to accurately predict air-transport demand under the influences of such accidental factors. This paper proposes a novel predicting framework for the air-transport demand considering the uncertainties caused by accidental factors including regional wars, climatic anomalies, and virus outbreaks. By employing a seasonal autoregressive integrated moving average (sARIMA) model as the basic model, a particle filter (PF)-based sARIMA-pf model is proposed. The applicability of adapting the high-order sARIMA model as the state transition model in a PF framework is shown and proven to be effective. The proposed method has the advantage of coping with short-term prediction with known uncertainties. By conducting case studies on the prediction of air passenger traffic volume in China, the sARIMA-pf model showed better performance than the sARIMA model and improved the accuracy by 49.29% and 44.96% under the conventional and pandemic scenarios, respectively, when using the root mean square error (RMSE) as the indicator.

Funder

Doctor of Entrepreneurship and Innovation of Jiangsu

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference25 articles.

1. Li, X., de Groot, M., and Bäck, T. (2021). Using forecasting to evaluate the impact of COVID-19 on passenger air transport demand. Decis. Sci., 1–16.

2. Kitsou, S.P., Koutsoukis, N.S., Chountalas, P., and Rachaniotis, N.P. (2022). International Passenger Traffic at the Hellenic Airports: Impact of the COVID-19 Pandemic and Mid-Term Forecasting. Aerospace, 9.

3. National Academies of Sciences (2022, March 22). Engineering, and Medicine. Addressing Uncertainty about Future Airport Activity Levels in Airport Decision Making. Available online: https://nap.nationalacademies.org/catalog/22704/addressing-uncertainty-about-future-airport-activity-levels-in-airport-decision-making.

4. Spitz, W., and Golaszewski, R. (2007). Airport Aviation Activity Forecasting, Transportation Research Board.

5. Box, G.E., Jenkins, G.M., Reinsel, G.C., and Ljung, G.M. (2015). Time Series Analysis: Forecasting and Control, John Wiley & Sons.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3