Data-Driven Graph Filter-Based Graph Convolutional Neural Network Approach for Network-Level Multi-Step Traffic Prediction

Author:

Lin Lei,Li Weizi,Zhu LeiORCID

Abstract

Accurately predicting network-level traffic conditions has been identified as a critical need for smart and advanced transportation services. In recent decades, machine learning and artificial intelligence have been widely applied for traffic state, including traffic volume prediction. This paper proposes a novel deep learning model, Graph Convolutional Neural Network with Data-driven Graph Filter (GCNN-DDGF), for network-wide multi-step traffic volume prediction. More specifically, the proposed GCNN-DDGF model can automatically capture hidden spatiotemporal correlations between traffic detectors, and its sequence-to-sequence recurrent neural network architecture is able to further utilize temporal dependency from historical traffic flow data for multi-step prediction. The proposed model was tested in a network-wide hourly traffic volume dataset between 1 January 2018 and 30 June 2019 from 150 sensors in the Los Angeles area. Detailed experimental results illustrate that the proposed model outperforms the other five widely used deep learning and machine learning models in terms of computational efficiency and prediction accuracy. For instance, the GCNN-DDGF model improves MAE, MAPE, and RMSE by 25.33%, 20.45%, and 29.20% compared to the state-of-the-art models, such as Diffusion Convolution Recurrent Neural Network (DCRNN), which is widely accepted as a popular and effective deep learning model.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Neuro Genetic Causal Convolution based Autoencoders, for Traffic Prediction in Smart Cities;2024 IEEE 14th Symposium on Computer Applications & Industrial Electronics (ISCAIE);2024-05-24

2. Hybrid Boostrapping BPNN-ARIMAX Model for Automobile Petrol Demand Forecasting;2024 IEEE 14th Symposium on Computer Applications & Industrial Electronics (ISCAIE);2024-05-24

3. Large-Scale Mixed Traffic Control Using Dynamic Vehicle Routing and Privacy-Preserving Crowdsourcing;IEEE Internet of Things Journal;2024-01-15

4. Multi-step forecasting of short-term traffic flow based on Intrinsic Pattern Transform;Physica A: Statistical Mechanics and its Applications;2023-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3