Recent Developments in Thermoelectric Generation: A Review

Author:

Sanin-Villa DanielORCID

Abstract

The world’s growing energy demand poses several concerns regarding the rational and efficient use of energy resources. This is also the case for many industrial processes, where energy losses and particularly thermal losses are common. Thermoelectric generators offer an alternative to address some of these challenges by recovering wasted heat and thereby increasing the overall efficiency of these processes. However, the successful operation of the thermoelectrical modules meant to carry this process is only possible when pairing these to an external control system; such a system plays an important role in predicting and operating such modules at its maximum power point. In this review paper, recent developments in the field of thermoelectric technology are discussed along with their mathematical models, applications, materials, and auxiliary devices to harvest thermal energy. Moreover, new advancements in phenomenological models are also discussed and summarized. The compiled evidence shows that the thermal dependence properties on the thermoelectric generator material’s modules and the mismatching thermal conditions play an important role in predicting power output in those systems, which prove the importance of including those parameters to enhance the accuracy of the energy production prediction. In addition, based on the evaluation of the mathematical models, it is shown that more studies are required to fill the gap between the current state-of-the-art of the technology and adjacent modeling techniques for the design and evaluation of thermal energy harvesting systems employing thermoelectric arrays under mismatching thermal conditions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3