Allocation of Resources for Emergency Response to Coal-to-Oil Hazardous Chemical Accidents under Railway Transportation Mode

Author:

Zhao Kaigong,Zhang Xiaolei,Wang Hui,Gai Yongling,Wang HaiyanORCID

Abstract

Railways of the National Energy Group using their own trains have become an important mode of transportation for coal-to-oil hazardous chemicals. Under the circumstances of the shortage of emergency resources and the coupling of multiple disasters, how to establish an effective and reasonable emergency resource allocation scheme for the railway transportation of dangerous chemicals from a disaster site is of great significance to the national task of ensuring safety for the transportation of energy. This paper focuses on the allocation of emergency rescue resources for railway transportation accidents involving coal-to-oil hazardous chemicals, considering the scenarios of the leakage of coal-to-oil, railway line damage, etc. According to the number of trapped people at the initial moment, the disaster situation and accident type, affected areas, etc., a multi-objective optimization model with the shortest response time of the emergency team and the lowest cost of transporting emergency materials along the railway transportation channel of coal-to-oil hazardous chemicals is constructed, based on the calculation method using the initial weight and the emergency weight assigned by the emergency rescue team. Furthermore, in order to avoid the problem of the weight of the local accident points being too small to participate in a rescue, a bee colony algorithm model based on pre-allocation was designed and compared with two traditional algorithms, allowing the realization of the search and selection of allocation methods. The analysis of the examples shows that the proposed method is efficient and fast, and the research results are practical and feasible, which can provide a scientific basis for the rapid decision of emergency rescue resource allocation in multi-disaster scenarios for large energy groups, and provide a reference for the allocation of public security emergency resources in the national emergency response.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference29 articles.

1. Research on the current situation and countermeasure analysis of national investment fund project management of national energy group;Zhao;China Coal,2018

2. Research and implementation of integrated operation integrated energy group intelligent emergency command platform;Zhao;Min. Saf. Environ. Prot.,2021

3. Optimizing Emergency Logistics for the Offsite Hazardous Waste Management;Zhao;J. Syst. Sci. Syst. Eng.,2019

4. Lu, J., Wang, X., and Zhao, J. (2021). Optimization of Emergency Supplies Scheduling for Hazardous Chemicals Storage Considering Risk. Sustainability, 13.

5. Using the Shapley Value to mitigate the emergency rescue risk for hazardous materials;Ke;Group Decis. Negot.,2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3