Abstract
Pavement maintenance is a key concern for pavement management authority. Countries (especially developing countries) are facing severe funding challenges regarding maintenance schemes. The existing pavement maintenance methods are goal-specific and lack integration of various indicators that are significant for low-cost PMSs. Thus, this paper investigates the possible defects that may occur in flexible pavements as well as the relationships between different defects. A detailed literature review was conducted to identify all possible defects in flexible pavements and key features considered PMSs. A questionnaire was designed to seek expert opinions on the defects and their possible relationships for a low-cost PMS. The data were collected from 283 experts currently working in pavement management authorities and pavement maintenance schemes. Aggregated mean score, box plotting, and the chi-square test were used to analyze the data. It is concluded that bumps/sags (3.17) are major defects reported by pavement experts in Pakistan, followed by fatigue cracks (3.07). Rutting (2.98) and rut depth (2.98) are the third-ranked key defects reported in this study. Depression (2.96), potholes (2.76), longitudinal crack (2.69), edge crack (2.55), roughness (2.51), and deflection (2.50) are also regular defects in pavement maintenance activities in Pakistan. The results are in an acceptable range of the three-mentioned validation methods. The correlation test results show that most of the defects in structural, functional, safety, and serviceability indicators reject the null hypothesis; thus, there are close relationships between these defects observed in flexible pavements. In the last stage, a PMS model is suggested to assist road management authorities in developing countries to make low-cost decisions for effective pavement rehabilitation.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction
Reference63 articles.
1. Framework for Multiobjective Optimization of Physical Highway Assets Investments;Wu;J. Transp. Eng.,2012
2. Highway Development and Management Model (HDM-4): Calibration and adoption for low-volume roads in local conditions;Thube;Int. J. Pavement Eng.,2013
3. Uddin, W. (2013). Public Infrastructure Asset Management, McGraw-Hill Education.
4. Andrew, W. (2013). Report Card for America’s Infrastructure, American Society of Civil Engineers.
5. Hall, K. (2016). Approaches to Make Federal Highway Spending More Productive.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献