Hydrological Response of Tropical Catchments to Climate Change as Modeled by the GR2M Model: A Case Study in Costa Rica

Author:

Mendez Maikel,Calvo-Valverde Luis-AlexanderORCID,Imbach Pablo,Maathuis BenORCID,Hein-Grigg David,Hidalgo-Madriz Jorge-Andrés,Alvarado-Gamboa Luis-Fernando

Abstract

This study aimed to assess the impacts of climate change on streamflow characteristics of five tropical catchments located in Costa Rica. An ensemble of five General Circulation Models (GCMs), namely HadGEM2-ES, CanESM2, EC-EARTH, MIROC5, MPI-ESM-LR dynamically downscaled by two Regional Climate Models (RCMs), specifically HadRM3P and RCA4, was selected to provide an overview of the impacts of different climate change scenarios under Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 using the 1961–1990 baseline period. The GR2M hydrological model was used to reproduce the historical monthly surface runoff patterns of each catchment. Following calibration and validation of the GRM2 model, the projected impact of climate change on streamflow was simulated for a near-future (2011–2040), mid-future (2041–2070) and far-future (2071–2100) for each catchment using the bias-corrected GCM-RCM multimodel ensemble-mean (MEM). Results anticipate wetter conditions for all catchments in the near-future and mid-future periods under RCPs 2.6 and 4.5, whereas dryer conditions are expected for the far-future period under RCP 8.5. Projected temperature trends indicate consistently warmer conditions with increasing radiative forcing and future periods. Streamflow changes across all catchments however are dominated by variations in projected precipitation. Wetter conditions for the near-future and mid-future horizons under RCPs 2.6 and 4.5 would result in higher runoff volumes, particularly during the late wet season (LWS). Conversely, dryer conditions for the far-future period under RCP8.5 would result in considerably lower runoff volumes during the early wet season (EWS) and the Mid-Summer Drought (MSD). In consequence, projected seasonal changes on streamflow across all catchments may result in more frequent flooding, droughts, and water supply shortage compared to historical hydrological regimes.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3