Delineation of Salinization and Recharge Sources Affecting Groundwater Quality Using Chemical and Isotopic Indices in the Northwest Coast, Egypt

Author:

Ezzeldin Hesham A.

Abstract

Salinization of coastal aquifers is a serious issue affected by climate change and enhanced by overexploitation of groundwater resources. This research aims to explore the hydrogeochemical processes that cause salinization of groundwater in coastal aquifers, such as the area located between Barrani and Baqbaq, on the northwestern coast of Egypt. Various techniques were applied, including Gibbs plots and hydrochemical facies diagrams (HFE-D), ion ratios and stable isotope bivariate plots, statistical analyses, a groundwater quality index for seawater intrusion (GQISWI), and a seawater mixing index (SMI). Based on the total dissolved solids (TDS), groundwater can be classified into four groups: slightly saline (9%), moderately saline (45%), highly saline (43%), and salty water (3%). The geochemical properties were further catergorized on the basis of other parameters and ion ratios, such as Caexcess, Nadeficit, Na/Cl, Cl/HCO3, and Br/Cl, which suggest the influence of cation exchange, seawater, and marine sediment dissolution. Additionally, stable isotopes indicated two groups. One of these has relatively high salinity and low isotopic content and is affected by the leaching and dissolution of marine deposits. The other group is enriched in δ18O and δD content, with much higher salinity due to mixing with seawater and evaporation. The GQISWI categorizes groundwater as saline and mixed (55 and 41%, respectively), followed by saltwater (4%), whereas the SMI calculations indicate that about 10% of the groundwater samples are impacted by seawater. Finally, the areal distribution of GQISWI and SMI identified some patches along the coastline as well as other inland places located about 12.5 km away from the sea that have undergone saltwater intrusion. In conclusion, overexploitation of groundwater should be avoided because the amount of annual rainfall is very limited.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Reference84 articles.

1. Simulation of Seawater Intrusion in Coastal Aquifers: Forty Five’Years exploitation in an Eastern Coast Aquifer in NE Tunisia;Gaaloul;Open Hydrolgeol. J.,2012

2. McInnis, D., and Silliman, S.E. (2010, January 13–17). Geoelectrical investigation of the freshwater–saltwater interface in coastal Benin, West Africa. Proceedings of the American Geophysical Union, Fall Meeting, San Francisco, CA, USA.

3. Edmunds, W.M., and Milne, C.J. (2001). Palaeowaters in Coastal Europe: Evolution of Groundwater since the Late Pleistocene, Geological Society of London.

4. Origin of groundwater salinity and hydrogeochemical processes in a confined coastal aquifer: Case of the Rhone delta (Southern France);Radakovitch;Appl. Geochem.,2008

5. Assessment of the salinization process at the coastalarea with hydrogeochemical tools and geographical information systems (GIS): Selcuk Plain, Izmir, Turkey;Somay;Water Air Soil Pollut.,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3