Fabrication of Earth-Abundant Electrocatalysts Based on Green-Chemistry Approaches to Achieve Efficient Alkaline Water Splitting—A Review

Author:

Jamesh Mohammed-IbrahimORCID,Akila ArumugamORCID,Sudha Dhakshinamoorthy,Gnana Priya Karunanidhi,Sivaprakash Vetrivel,Revathi ArumugamORCID

Abstract

The fabrication of earth-abundant electrocatalysts by green-chemistry approaches for electrochemical water splitting could diminish or alleviate the use or generation of hazardous substances, which could be highly desirable to achieve efficient, green alkaline water electrolysis for clean energy production (H2). This review started by introducing the importance of the green-chemistry approaches. Later, this paper reviewed the fabrication of high-performance earth-abundant electrocatalysts using green-chemistry approaches for electrochemical water splitting (HER and OER). Moreover, this review discussed the green-chemistry approaches for the fabrication of earth-abundant electrocatalysts including phosphide/pyrophosphate-, carbon-, oxide-, OH/OOH/LDH-, alloy/B/nitride-, and sulfide/selenide (chalcogenide)-based earth-abundant electrocatalysts. Moreover, this review discussed various green-chemistry approaches, including those used to alleviate toxic PH3 gas emission during the fabrication of transition-metal phosphide-based electrocatalysts, to design energy-efficient synthesis routes (especially room-temperature synthesis), to utilize cheap or biodegradable substrates, and to utilize biomass waste or biomass or biodegradable materials as carbon sources for the fabrication of earth-abundant electrocatalysts. Thus, the construction of earth-abundant electrocatalysts by green-chemistry approaches for electrochemical water splitting could pave an efficient, green way for H2 production.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3