Charging Stations Selection Using a Graph Convolutional Network from Geographic Grid

Author:

Qin Jianxin,Qiu JingORCID,Chen Yating,Wu TaoORCID,Xiang LonggangORCID

Abstract

Electric vehicles (EVs) have attracted considerable attention because of their clean and high-energy efficiency. Reasonably planning a charging station network has become a vital issue for the popularization of EVs. Current research on optimizing charging station networks focuses on the role of stations in a local scope. However, spatial features between charging stations are not considered. This paper proposes a charging station selection method based on the graph convolutional network (GCN) and establishes a charging station selection method considering traffic information and investment cost. The method uses the GCN to extract charging stations. The charging demand of each candidate station is calculated through the traffic flow information to optimize the location of charging stations. Finally, the cost of the charging station network is evaluated. A case study on charging station selection shows that the method can solve the EV charging station location problem.

Funder

Open Research Fund of State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3