Smart Water Quality Prediction Using Atom Search Optimization with Fuzzy Deep Convolutional Network

Author:

Al Duhayyim Mesfer,Mengash Hanan AbdullahORCID,Aljebreen Mohammed,K Nour Mohamed,M. Salem NerminORCID,Zamani Abu SarwarORCID,Abdelmageed Amgad AttaORCID,Eldesouki Mohamed I.

Abstract

Smart solutions for monitoring water pollution are becoming increasingly prominent nowadays with the advance in the Internet of Things (IoT), sensors, and communication technologies. IoT enables connections among different devices with the capability to gather and exchange information. Additionally, IoT extends its ability to address environmental issues along with the automation industry. As water is essential for human survival, it is necessary to integrate some mechanisms for monitoring water quality. Water quality monitoring (WQM) is an efficient and cost-effective system intended to monitor the quality of drinking water that exploits IoT techniques. Therefore, this study developed a new smart water quality prediction using atom search optimization with the fuzzy deep convolution network (WQP-ASOFDCN) technique in the IoT environment. The WQP-ASOFDCN technique seamlessly monitors the water quality parameters using IoT devices for data collection purposes. Data pre-processing is carried out at the initial stage to make the input data compatible for further processing. For water quality prediction, the F-DCN model was utilized in this study. Furthermore, the prediction performance of the F-DCN approach was improved by using the ASO algorithm for the optimal hyperparameter tuning process. A sequence of simulations was applied to validate the enhanced water quality prediction outcomes of the WQP-ASOFDCN method. The experimental values denote the better performance of the WQP-ASOFDCN approach over other approaches in terms of different measures.

Funder

Princess Nourah bint Abdulrahman University

Deanship of Scientific Research at Umm Al-Qura University

King Saud University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3