Frequency Stability of AC/DC Interconnected Power Systems with Wind Energy Using Arithmetic Optimization Algorithm-Based Fuzzy-PID Controller

Author:

Elkasem Ahmed H. A.,Khamies Mohamed,Magdy GaberORCID,Taha Ibrahim B. M.,Kamel SalahORCID

Abstract

This article proposes an intelligent control strategy to enhance the frequency dynamic performance of interconnected multi-source power systems composing of thermal, hydro, and gas power plants and the high penetration level of wind energy. The proposed control strategy is based on a combination of fuzzy logic control with a proportional-integral-derivative (PID) controller to overcome the PID limitations during abnormal conditions. Moreover, a newly adopted optimization technique namely Arithmetic optimization algorithm (AOA) is proposed to fine-tune the proposed fuzzy-PID controller to overcome the disadvantages of conventional and heuristic optimization techniques (i.e., long time in estimating controller parameters-slow convergence curves). Furthermore, the effect of the high voltage direct current link is taken into account in the studied interconnected power system to eliminate the AC transmission disadvantages (i.e., frequent tripping during oscillations in large power systems–high level of fault current). The dynamic performance analysis confirms the superiority of the proposed fuzzy-PID controller based on the AOA compared to the fuzzy-PID controller based on a hybrid local unimodal sampling and teaching learning-based optimization (TLBO) in terms of minimum objective function value and overshoots and undershoots oscillation measurement. Also, the AOA’s proficiency has been verified over several other powerful optimization techniques; differential evolution, TLBO using the PID controller. Moreover, the simulation results ensure the effectiveness and robustness of the proposed fuzzy-PID controller using the AOA in achieving better performance under several contingencies; different load variations, the high penetration level of the wind power, and system uncertainties compared to other literature controllers adjusting by various optimization techniques.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3