Abstract
Ensemble learning was adopted to design risk prediction models with the aim of improving border inspection methods for food imported into Taiwan. Specifically, we constructed a set of prediction models to enhance the hit rate of non-conforming products, thus strengthening the border control of food products to safeguard public health. Using five algorithms, we developed models to provide recommendations for the risk assessment of each imported food batch. The models were evaluated by constructing a confusion matrix to calculate predictive performance indicators, including the positive prediction value (PPV), recall, harmonic mean of PPV and recall (F1 score), and area under the curve. Our results showed that ensemble learning achieved better and more stable prediction results than any single algorithm. When the results of comparable data periods were examined, the non-conformity hit rate was found to increase significantly after online implementation of the ensemble learning models, indicating that ensemble learning was effective at risk prediction. In addition to enhancing the inspection hit rate of non-conforming food, the results of this study can serve as a reference for the improvement of existing random inspection methods, thus strengthening capabilities in food risk management.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献