Model Reduction Applied to Empirical Models for Biomass Gasification in Downdraft Gasifiers

Author:

Binns Michael,Ayub Hafiz Muhammad Uzair

Abstract

Various modeling approaches have been suggested for the modeling and simulation of gasification processes. These models allow for the prediction of gasifier performance at different conditions and using different feedstocks from which the system parameters can be optimized to design efficient gasifiers. Complex models require significant time and effort to develop, and they might only be accurate for use with a specific catalyst. Hence, various simpler models have also been developed, including thermodynamic equilibrium models and empirical models, which can be developed and solved more quickly, allowing such models to be used for optimization. In this study, linear and quadratic expressions in terms of the gasifier input value parameters are developed based on linear regression. To identify significant parameters and reduce the complexity of these expressions, a LASSO (least absolute shrinkage and selection operator) shrinkage method is applied together with cross validation. In this way, the significant parameters are revealed and simple models with reasonable accuracy are obtained.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3