Abstract
Traffic prediction is essential for advanced traffic planning, design, management, and network sustainability. Current prediction methods are mostly offline, which fail to capture the real-time variation of traffic flows. This paper establishes a sustainable online generative adversarial network (GAN) by combining bidirectional long short-term memory (BiLSTM) and a convolutional neural network (CNN) as the generative model and discriminative model, respectively, to keep learning with continuous feedback. BiLSTM constantly generates temporal candidate flows based on valuable memory units, and CNN screens out the best spatial prediction by returning the feedback gradient to BiLSTM. Multi-dimensional indicators are selected to map the multi-view fusion local trend for accurate prediction. To balance computing efficiency and accuracy, different batch sizes are pre-tested and allocated to different lanes. The models are trained with rectified adaptive moment estimation (RAdam) by dividing the dataset into the training and testing sets with a rolling time-domain scheme. In comparison with the autoregressive integrated moving average (ARIMA), BiLSTM, generating adversarial network for traffic flow (GAN-TF), and generating adversarial network for non-signal traffic (GAN-NST), the proposed improved generating adversarial network for traffic flow (IGAN-TF) successfully generates more accurate and stable flows and performs better.
Funder
National Key Research and Development Program of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Reference30 articles.
1. Urban traffic flow online prediction based on multi‐component attention mechanism
2. A data-driven lane-changing model based on deep learning
3. Generative adversarial nets;Goodfellow;arXiv,2014
4. Unsupervised representation learning with deep convolutional generative adversarial networks;Radford;arXiv,2015
5. The numerics of gans;Mescheder;arXiv,2017
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献