Invertebrate and Plant Community Diversity of an Illinois Corn–Soybean Field with Integrated Shrub Willow Bioenergy Buffers

Author:

Zumpf Colleen,Quinn JohnORCID,Cacho Jules,Grasse Nora,Negri Maria Cristina,Lee DoKyoung

Abstract

Perennial bioenergy crop production within intensively managed agricultural landscapes has the potential to improve the sustainability, resiliency, and diversity of these landscapes. Perennial crops are ideal because of their high production potential on marginal lands relative to grain crops (e.g., corn and soybean) and their ability to provide additional ecosystem service benefits. When agricultural landscapes are designed to target specific services, determining the non-targeted services of perennial bioenergy crops can further promote their adoption. This 3-year study addresses this proposition by evaluating the canopy invertebrates and understory plant (non-target crop) communities using bee bowls and point measurement of ground coverage, respectively, within a grain field integrated with shrub willow buffer systems designed for nutrient loss reduction. Greater plant diversity and richness were observed under willow than under grain, resembling that of the surrounding riparian community with more perennial, native species. However, the same relationship did not hold true for invertebrates, with seasonality having a significant influence resulting in similar communities observed in willow and grain plots. The presence of unique plant and invertebrate species in both willow and grain crops as well as foraging pollinators on both crop and non-target crop species highlights the importance of habitat heterogeneity for supporting biodiversity and the potential benefits of buffer bioenergy landscape designs.

Funder

U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Bioenergy Technologies Office

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3