On the Classification of a Greenhouse Environment for a Rose Crop Based on AI-Based Surrogate Models

Author:

Bhat Showkat AhmadORCID,Huang Nen-Fu,Hussain Imtiyaz,Bibi Farzana,Sajjad Uzair,Sultan MuhammadORCID,Alsubaie Abdullah SaadORCID,Mahmoud Khaled H.

Abstract

A precise microclimate control for dynamic climate changes in greenhouses allows the industry and researchers to develop a simple, robust, reliable, and intelligent model. Accordingly, the objective of this investigation was to develop a method that can accurately define the most suitable environment in the greenhouse for an optimal yield of roses. Herein, an optimal and highly accurate BO-DNN surrogate model was developed (based on 300 experimental data points) for a quick and reliable classification of the rose yield environment considering some of the most influential variables including soil humidity, temperature and humidity of air, CO2 concentration, and light intensity (lux) into its architecture. Initially, two BO techniques (GP and GBRT) are used for the tuning process of the hyper-parameters (such as learning rate, batch size, number of dense nodes, number of dense neurons, number of input nodes, activation function, etc.). After that, an optimal and simple combination of the hyper-parameters was selected to develop a DNN algorithm based on 300 data points, which was further used to classify the rose yield environment (the rose yield environments were classified into four classes such as soil without water, correct environment, too hot, and very cold environments). The very high accuracy of the proposed surrogate model (0.98) originated from the introduction of the most vital soil and meteorological parameters as the inputs of the model. The proposed method can help in identifying intelligent greenhouse environments for efficient crop yields.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3